Low Pressure Chemical Vapour Deposition of AlN-Si₃N₄ Codeposits

F. Henry, B. Armas, R. Berjoan, C. Combescure and C. Dupuy

Institut de Science et de Génie des Matériaux et Procédés, BP 5, Odeillo, F-66125 Font Romeu Cedex, France

Abstract

Codeposits of AlN and Si_3N_4 nitrides are obtained by low pressure chemical vapour deposition (LPCVD) in a hot-wall reactor using AlCl₃, SiC₄ and NH₃ as precursors. The AlCl₃ is prepared by action of SiCl₄ on an aluminium supply, heated at 520°C. The nitrogen is used as a carrier gas. The deposits are made at the temperature of 1100°C and at a total pressure of 133 Pa, on graphite substrates covered with SiC. By modifying the gas phase composition in AlCl₃ and SiCl₄, a mixture of two phases AlN and Si₃N₄ in various proportions is obtained. The codeposits were characterized by: X-ray diffraction, WDS, XPS and Auger. © 1997 Elsevier Science Limited.

Résumé

Des codépôts des nitrures AlN et Si₃N₄ sont obtenus par dépôt chimique en phase vapeur sous pression reduite (LPCVD), dans un réacteur à paroi chaude, en utilisant AlCl₃, SiCl₄ et NH₃ comme précurseurs. Le ACl₃ est préparé par action de SiCl₄ sur une charge d'aluminium chauffée à 520°C. De l'azote est employé comme gaz d'entraînement. Les dépôts sont réalisés à la température de 1100°C et à une pression totale de 133 Pa sur des substrats en graphite recouverts de SiC. En modifiant la composition de la phase gazeuse en AlCl₃ et SiCl₄, un mélange des deux phases AlN et Si₃N₄ en proportions variables est obtenu. Les codépôts sont caractérisés par: diffraction de rayons X, WDS, XPS et Auger.

1 Introduction

The aluminium nitride (AlN) is a refractory compound stable at high temperature above 1000°C and an oxidation-resistant product.¹ In a previous work we have shown the influence of the experimental preparation conditions on the morphology of CVD AlN films.² AlN is also an insulator compound presenting a large forbidden band (gap $\sim 6.2 \text{ eV}$) and may be used in electronic devices.^{3,4}

The silicon nitride (Si_3N_4) is also widely known for its high refractarity and electrical applications.⁵ The oxidation-resistance and its physico-chemical behaviour has been widely considered by many workers.^{6–8}

Layers of aluminium and silicon nitrides may be employed for protection against oxidation at high temperature. Nevertheless if we consider each nitride taken separately:

- the AlN oxidation leads to the formation of a porous layer of alumina, consequently it is not protective against oxygen diffusion;
- the Si_3N_4 oxidation under oxygen low pressure leads to the formation of volatile SiO, consequently in this case the protection against oxidation is still not assured.

In a previous^{9,10} thermodynamic and experimental study we have shown the simultaneous AlN-Si₃N₄ deposition possibility. The main difficulty in this study is the inlet gas phase and the deposit composition control.

In this paper we show the possibility of preparing AlN-Si₃N₄ deposits in a large range of compositions, using low-pressure chemical vapour deposition (LPCVD) as a preparation technique.

2 Experimental Procedure

2.1 Deposits preparation

In a previous study¹⁰ we have described the experimental set-up (a vertical hot wall reactor). The source gases were AlCl₃, SiC₄, NH₃ and N₂ as a carrier gas. In this work the AlCl₃ is obtained by a chemical reaction between a gaseous SiCl₄ and a metallic aluminium supply heated at 520°C. At this temperature the SiCl₄ is entirely transformed in AlCl₃. The control of SiCl₄ gas flow allows us to

Table 1. Codeposit samples prepared at $T = 1100^{\circ}$ C, P = 133 Pa and with a variable gas phase composition. We give the deposition rate J(Å/s) corresponding to each gas phase composition

Codeposit samples	T=1	P=133 Pa		
	$Q(AlCl_3)$ sccm	$Q(SiCl_4)$ sccm	$Q(NH_3)$ sccm	J (Å/s)
1	3.0	1	10	13.0
2	2.5	1	10	7.8
3	1.5	1	10	5.2
4	1.0	1	10	3.6
5	1.0	4	10	2.3

control the AlCl₃ gas flow; the chlorides and ammonia were introduced separately to avoid reactions between them before the reactor inlet. This method of AlCl₃ preparation allows us to know exactly the gas composition introduced into the reactor. SiCl₄ is also used as the silicium source and introduced separately in the reactor. Besides, this method assures the reproductibility of the deposit composition.

A graphite base covered by an SiC layer produced by the pyrolysis of tetramethylsilane was used as a substrate for all deposits.¹¹ In this study all nitrides are deposited at 1100°C, according to the preceding kinetic studies.¹⁰

2.2 Experimental results

We have realized many experiments with different gas phase compositions with the aim of obtaining deposits from AlN to Si_3N_4 with intermediate compositions. We have chosen five samples corresponding to different values of the gas phase composition (Table 1).

We can observe (Table 1) that the deposition rate (J (Å/s)) is lowered when the AlCl₃ amount decreases in the gas phase.

3 Characterization of Codeposits

Composition of samples 1-5 (Table 1) were determined by an Electron Probe Micro-Analysis (EPMA) CAMECA using Wavelength Dispersive System (WDS). The results displayed in Table 2 show that the Al atomic composition (at %) decreases from sample 1 to sample 5. This result can be related to the change in AlCl₃ concentration in the gas phase reported in Table 1.

Therefore, by contrast, we can observe that the amount of Si increases when the Al quantity decreases. The ratio R = Al/Si displayed in Table 2 accurately describes the composition variation of the samples with the change in gas phase composition.

The crystalline structure of the deposits has been characterized using the X-ray diffraction technique. It was observed that as the quantity of silicon nitride in a given codeposit sample increased, the corresponding X-ray diffraction peaks were broadened, revealing an amorphous nature. Inversely the aluminium nitride-rich codeposits were well crystallized.

The surface morphology observed for samples 2, 3 and 4 are very similar to that given Fig. 1(b), that shows a micrography obtained by SEM. This morphology is very different of a pure deposit AlN which shows a well crystallized surface (see Fig. 1(a)). We can conclude that a morphological change is observed with increasing the Si concentration in the codeposit. We have also observed (Fig. 1(c)) the surface morphology of the Si₃N₄ film, this surface being characteristic of an amorphous deposit. Finally the surface morphology of the codeposits are intermediate between that of the well crystallized AlN and the amorphous Si₃N₄.

Also, in a previous work,¹² by transmission electron microscopy 'nanocrystals' of AlN are shown to be present in an Si_3N_4 amorphous phase.

4 X.P.S. Measurements on AlN-Si₃N₄ Codeposits

AlN and Si₃N₄ are very insulating compounds, so the energy positions of the photoelectron peaks were shifted at lower energies: about $-3 \,\text{eV}$. Therefore, we used the calculations of Auger⁹ parameters α' in an attempt to identify the presence of these compounds, the Auger parameters not being sensitive to surface changing effects.¹³ We have reported in Table 3 the values of the Auger parameters measured for sample (a) (pure AlN), sample (e) (pure Si₃N₄), samples (b) and (d) corresponding respectively to samples 2 and 5 in Tables 1 and 2, and codeposit (c) which was prepared with the following experimental conditions: $T = 1000^{\circ}C$, P = 133 Pa, $AlCl_3 = 1.5$ sccm, $SiC_4 = 1$ sccm, $NH_3 = 8$ sccm. The α' values of Si for sample (b) and Al for sample (d) were not measured, due to the poor accuracy resulting from the low intensities of the KL_{2.3}L_{2.3} Auger transitions. The results reported in Table 3 indicate that these codeposits are constituted essentially by mixtures of Al and Si nitrides. However, the Si $KL_{2,3}L_{2,3}$ and Al $KL_{2,3}L_{2,3}$ transitions observed for codeposit (c) (Fig. 2) seem to indicate that the Si and Al chemical bonds present in this deposit are more numerous than $Si(N_4)$ and $Al(N_4)$ bonds which must be found in a mixture of Si and Al

Fig. 1. SEM micrograph showing the morphology of different deposits obtained at $T = 1100^{\circ}$ C, P = 133 Pa: (a) pure AlN prepared with 1 sccm AlCl₃ and 10 sccm NH₃; (b) codeposit AlN-Si₃N₄ (sample (3); (c) pure Si₃N₄, prepared with 1 sccm SiCl₄ and 10 sccm NH₃.

Table 2. Codeposit composition (at%) determined by WDS analysis of several points along a polished cross-section of the sample

Codeposit samples	T=1	P = 133 Pa		
	Al(at%)	Si(at%)	N(at%)	R = Al/Si
1	4.15	5.4	53.1	7.69
2	40.7	6.7	52.6	6.7
3	36.8	8.8	54.3	4.18
4	35.4	10.5	54.1	3.37
5	7.0	38.0	55.0	0.18

Table 3. X.P.S. compositions and Auger parameters values α' measured for AlN, SiN_x and AlN-SiN_x codeposit

Codeposit samples	XPS Compositions: at%				α' values: $\pm 0.2 eV$		
	Al	Si	N	0	С	α' Al	α' Si
(a)	44±4	0	47±5	7±1	2 ± 1	1463.1	
(b)	41 ± 4	4 ± 1	46 ± 5	5 ± 1	3 ± 1	1462.9	
(c)	21 ± 2	26 ± 3	42 ± 4	5 ± 1	5 ± 1	1463-1	1714.6
(d)	5 ± 1	35 ± 4	50 ± 5	6 ± 1	3 ± 1		1714.6
(e)	0	39 ± 4	55 ± 5	2 ± 1	3 ± 1		1714.4

Fig. 2. X.A.E.S. Al KL_{2,3}L_{2,3} (Fig. 2(a)) and Si KL_{2,3}L_{2,3} (Fig. 2(b)) spectra collected on deposit (c) compared with reference spectra obtained for a crystallized AlN deposit (Fig. 2(a)) and an amorphous SiN_X deposit (Fig. 2(b)).

nitrides. Figure 2 shows that the Al KLL and Si KLL, X.A.E.S. transitions of codeposit (c) are broadened when compared with the Auger transitions collected for AlN and Si₃ N₄ deposits. The broadening of the KLL peaks can be attributed to a large contribution of the interface domains between nanometric AlN crystals and amorphous Si nitride. In these interfaces domains the possibility of Si(N-xAly) tetrahedra, with x+y=4 can be expected. This possibility is especially suggested by the shoulder indicated by an arrow and located at the high energy side of the KLL transition collected for codeposit (c).

5 Conclusion

This study has demonstrated the possibility of preparing codeposits of AlN-Si₃N₄ in all ratios. A good control of AlCl₃ and SiCl₄ gas flows is obtained. Two independent gas inlets are then used in this experiment, one for SiCl₄ and one for pure AlCl₃ obtained by the complete conversion of SiCl₄ on an aluminium supply heated at 520°C.

The next stage will be the study of thermo-chemical properties of AlN-Si₃N₄ codeposits and particularly the oxidation resistance of carbon composites coated from AlN-Si₃N₄ mixtures.

References

1. Billy, M., Jarrige, J., Lecompte, J. P., Mexmain, J. and Yefsah, S., Comportement à l'oxydation du nitrure d'aluminium fritte: *Rev. Chim. Min.* 1982, **19**, 673-683.

- Aspar, B., Rodriguez-Clemente, R., Figueras, A., Armas, B. and Combescure, C., Influence of the experimental conditions on the morphology of CVD AlN films. *Journal* of Crystal Growth, 1993, 129, 56–66.
- 3. Paulcau, Y., Hantzpergue, J. J. and Remy, J. C., Les couches minces de nitrure d'aluminium. *Bull. Soc. Chim. France*, 1979, **5-6**, 199–214.
- 4. Yim, W. M., Sotofko, E. J., Zanzucchi, P. J., Pankove, J. I., Ettenberg, M. and Gilbert, S. L., Epitaxially grown AlN and its optical band gap. *Journal of Appl. Phys.*, 1973, 44, 292.
- Niihara, K. and Hirai, T., Chemical vapour deposited silicon nitride. Part 1. Preparation and some properties. *Journal of Mater. Sci.*, 1976, 11, 593-603.
- Singhal, S. C., Thermodynamics and kinetics of oxidation of hot-pressed silicon nitride. *Journal of Mater. Science*, 1976, 11, 500-509.
- Hirai, T., Niihara, K. and Goto, T., Oxidation of CVD Si₃N₄ at 1550 to 1650°C. Journal of Am. Ceram. Soc., 1980, 63(7/8), 419-424.
- 8. Wang, A., Thenegal, D., Royere, C., Dupuy, C. and Armas, B., Comportement physico-chimique de Si_3N_4 , obtenu par LPCVD, soumis à des flux radiatifs intenses. *Journal de Physique, C5*, 1989, **50**, 353-362.
- Henry, F., Armas, B., Balat, M., Berjoan, R. and Combescure, C., A study of AlN-Si₃N₄ codeposits using the LPCVD technique. *Journal de Physique IV, C3, Suppl. II*, 1993, 3, 519–526.
- Henry, F., Armas, B., Combescure, C., Thenegal, D. and Flamand, R., Chemical vapour deposition of AlN-Si₃N₄ codeposits. *Journal of de Physique IV*, C5, Suppl. II, 1995, 5, 785-792.
- 11. Henry, F., Armas, B., Combescure, C., Figueras, A. and Garelik, S., β -SiC deposition by hot wall LPCVD using tetramethylsilane. Surface and Coating Technology, 1996, **80**, 134–138.
- Marti, P., Henry, F., Mazel, A., Armas, B. and Sevely, J., Transmission electron microscopy studies of (AlN-Si₃N₄) codeposits obtained by LPCVD. *Journal de Physique IV*, *C5, Suppl. II*, 1995, 5, 905–912.
- Wagner, C. D., in *Practical Surface Analysis*, ed. D. Briggs and M. P. Seah, J. Wiley and Sons Ltd, Chichester, 1983, Appendix 4, p. 477.